CS&SS 321 - Data Science and Statistics for Social Sciences

Module I - Getting started with R/RStudio

Ramses Llobet

Welcome!

(But Seriously) Welcome!

- Welcome to the first quiz section of CS&SS / SOC / STAT 321!
- I am Ramses Llobet (rllobet@uw.edu), I am a Ph.D. student in Political Science.
- My research interest are in political economy and applied statistics.
- Please DO NOT hesitate to stop me if you don't hear or understand me properly.
- ▶ DO NOT hesitate to ask questions. No question is silly. :)

Now it's your turn

Name and major/year (or intended major)?

• Why are you take this course?

► What is your experience with R (zero shame)?

R setup

- ► How to install R and R-studio.
 - R-4.3.2 for Windows
 - ► R-4.3.2 for macOS
- R-studio can be downloaded from posit's repository.
- I recommend this tutorial from Casey Bates for an overview of R and RStudio.
- Live coding: how to install packages and start tutorials (setting_up.R).
- For Mac users, installation of the **qss** package may sometimes fail if **pandoc** or **curl** is not installed or updated on your Mac. To resolve this, you can:
 - 1. Install the package manager Homebrew package.
 - Then use the macOS terminal to install pandoc or curl using the commands brew install pandoc or brew install curl.

Useful free online R resources

Introductory:

► Grolemund (2014) Hands-On Programming with R.

Intermediary:

▶ Wickham et al. (2023) *R* for Data Science. 2nd Edition.

R Markdown

► Xie et al. (2022) R Markdown: The Definitive Guide

Others

Stack Overflow.

ChatGPT

Project management and working directory

- A good practice is to keep your projects and files organized and tidy.
 - Avoid accumulating data and R files in your downloads folder.
- I recommend creating an R project file in your course folder materials. R projects have several advantages:
 - Centralized and efficient *workflow*.
 - Sets the **current** (*root*) working directory.
 - See more in Martin Chan's beginner's guide.

What are working directories?

- A directory is a folder in a file system that stores files and other sub-directories.
- A path is a string that specifies the location of a directory in a file system.
- ► For example:
 - ▶ D:\Google Drive
 - D:\Google Drive\Phd UW\Courses\Third Year\CSSS 594
 - Text as Data
- When you run a command or script, R looks for files and sub-directories based on relative paths to your current working directory.

Absolute and relative paths

- Absolute Path: Specifies the full path from the root directory to the file or directory.
 - For example: D:\Google Drive\Phd UW\Courses\Third Year\CSSS 321\scripts\setting_up.R is an absolute path.
- Relative Path: Specifies the path relative to the current working directory.
 - For example, if the working directory is D:\Google Drive\Phd UW\Courses\Third Year\CSSS 321, then
 - scripts\setting_up.R is a relative path.

Project management: working directory

 .Rproj (R Project File) in your project folder establishes the working directory as its absolute path upon opening R.

- Employing .Rproj and relative paths in R streamlines project management and collaboration by overseeing files, inputs, and outputs.
 - Live demostration of how to create and manage an R Project File.

Project management: workflow

Working directories: obsolete practices

- ► Workflow with .*Rproj* is relatively **new**.
- Until recently, users had to manually set working directories using functions or specialized packages. See example:

setwd() # function to set directory

setwd("D:/Google Drive/Phd UW/Courses
 /Third Year/CSSS 594 - Text as Data
 /presentation") # remember to put quotes

What are functions?

- They are a set of instructions that performs a specific task in R.
- Functions often take one or more arguments, which are inputs that are used to customize the behavior of the function.
- The mean() function takes one required argument, which is the vector of numbers to calculate the mean of.

```
# create a vector consisting of midterm scores.
grades_M <- c(76, 82, 94, 45, 75)</pre>
```

calculate the mean using the mean() function mean(grades_M)

[1] 74.4

What are functions?

the mean() function also has additional optional arguments, which can be used to further customize the behavior of the function.

```
# create a vector consisting of final scores.
grades F <- c(82, 90, 89, NA, 64)</pre>
```

```
# calculate the mean using the mean() function
mean(grades_F)
```

[1] NA

use the argument `na.rm` to evaluate the removal of NAs
mean(grades_F, na.rm= TRUE)

```
## [1] 81.25
```

Remember: use ? or help() to see the documentation of a function.

- Save the following Cheat Sheet for RMarkdown.
- If any of you is looking for an general introduction for RMarkdown, I suggest you to check Chapter 27 from Wickham and Grolemund (2017) - R for Data Science.
- If you want a more comprehensive guide, then check Xie et al. (2021) R Markdown: The Definitive Guide.
- Another, more applied, resource is Xie et al. (2022) R Markdown Cookbook.

- RMarkdown is a document format that allows you to integrate R code and output into a single document.
- Besides R code and output, it can also include text, images, and other multimedia elements, allowing for rich and informative documents.
- Pandoc is a free and open-source document converter that can convert documents from one markup language to another.
 - In the context of Rmarkdown, pandoc is the underlying document converter (sfotware) that converts the R-markdown file into a final output format, such as HTML, PDF, or Word.

The output format of the final document can be customized using options in the YAML header or external templates.

- The YAML header in RMarkdown is a block of configuration settings at the beginning of the document enclosed by three hyphens (---).
- It is used to specify document metadata and other settings such as the document title, author, output format, and more.

► Code chunks are sections of R code that can be executed and embedded within an RMarkdown document.

- Code chunks can be inserted using the syntax {r} and closed with "'.
 - ► Short cut in Windows: Ctrl + Alt + I
 - Short cut in macOS: Cmd + Option + I
- Code chunks can be customized with various **chunk options**.
- Note: set the function knitr::opts_chunk\$set() with any general setting without repeating it in every code chunk.

Frequently used chunk options

Option	Description
include	If FALSE, knitr will run the chunk but not include the chunk in the final document
echo	If FALSE, knitr will not display the code in the code chunk above it's results in the final document.
error	If FALSE, knitr will not display any error messages generated by the code.
message	If FALSE, knitr will not display any messages generated by the code.
warning	If FALSE, knitr will not display any warning messages generated by the code.

Recommendation for Homework

Option	HW setting
include	TRUE
echo	TRUE
error	FALSE
message	FALSE
warning	FALSE

- In RMarkdown, rendering a document means converting the source RMarkdown file into its final output format (using pandoc).
- To render a document, we need to Knit, knitting is the process of taking the RMarkdown file and converting it into a single, cohesive document that can be rendered into different formats (HTML, PDF, etc).
 - ► To produce **PDF file**, you need TeX files.
- Easy way: Install the tinytex package: install.packages("tinytex"). Then run tinytex::install_tinytex().

Knitting

► To knit:

and the current document (Ctrl+Shift+K) Constraints and the current document (Ctrl+Shift+K) Constraints and the current document (Ctrl+Shift+K) Chritting						
es.Rmd* × 🖻 W1D1_intro.R × 🚺 Lab_1.Rmd* × 🖻 W2D1_subset_logicals.Rmd × 🖷 🖻 Knit on Save 🛝 🔍 🖋 Knit 🔹 🏕 - ual Knit the current document (Ctrl+Shift+K) `Knitting`	🖻 📲 🔚 📄 📄 🥕 Go to fil	nction 📰 👻 Addins 👻				
es.Rmd* × 💽 W1D1_intro.R × 🚺 ab_1.Rmd* × 🖻 W2D1_subset_logicals.Rmd × 🖷 🔳 Knit on Save 🖓 ৎ V Knit + 🌣 + ual Knit the current document (Ctrl+Shift+K) `Knitting`						
■ Knit on Save ABC Knit → ☆ → ual `Knit the current document (Ctrl+Shift+K) `Knitting`	es.Rmd* × 🛛 🖻 W1D1_intro.R ×	Lab_1.Rmd* × 🛛 🔊 W2D1_subset_logicals.Rmd ×				
ual Knit the current document (Ctrl+Shift+K)	🔚 🔲 Knit on Save 🛛 🖉 🔍 🖌 🖋 Knit 👻 🌣 🔸					
Knit the current document (Ctrl+Shift+K)						
`Knitting`	ual	Knit the current document (Ctrl+Shift+K)				
Knitting		Kine the current document (curr shint (k)				
	Knitting					

► Auxiliary window for output preview:

Working directories and R-Markdown

- When opening an RMarkdown file, this will set the file location as the working directory.
- Change the following option in the global options to avoid this behavior:

Live demonstration and in-class exercise:

Open the file RMarkdown_sample.Rmd

Reference: David Robinson

x <- 10 + foo

Error: object 'foo' not found: You tried to access a variable that doesn't exist.

You might have:

- misspelled the variable name
- ▶ incorrectly **capitalized** the variable name (R is case sensitive!)
- forgotten to run the line that defines the variable in the first place, or run into an error on that line.

x <- foo(...)

Error: could not find function "foo": You tried to use a function that doesn't exist. You might have:

- misspelled the function name
- incorrectly capitalized the function name
- ▶ forgotten to **load the library** that provides this function.

x <- c(1:10))

Error: unexpected ')' in ...: There is an extra end parenthesis in your line

Error: unexpected symbol in ...: The most common cause of this is forgetting a punctuation mark such as a comma: for example, foo(bar1 bar2) instead of foo(bar1, bar2).

Error: unexpected numeric constant is similar: it just means the value after the missing punctuation is a number (for example, x 2 instead of x = 2).

paste("welcome to CSSS, 321)

- You might see a + sign in the interpreter after you hit return. This means the previous statement is unfinished:
- it might have an open parenthesis that never closes,
 - ▶ an open " or ' that is unmatched, or
 - it could end with an operator like + or that expects the line to continue afterwards.
- Find the problem in your previous lines (count parentheses, and check your quotes) and fix it.

Getting help: Using the Internet to Your Advantage

- When encountering coding error messages, use Google or post on Stack Overflow for solutions.
- Both beginners and experts often rely on online searches for coding assistance.
- For example, let's say that I want to know how to rename a column in my dataset. I could Google:
 - ► "How to rename a column in R" ... and look to the answer.
 - Make sure that you understand the terminology.

Getting help: minimal reproducible example

- If you feel stuck with an error, seek help but remember to provide reproducible code in an R-script file:
 - 1. Load necessary packages at the beginning.
 - 2. Include all code up to the error, or at least the **necessary** to reproduce it.
 - 3. Comment your code for clarity.
 - 4. If applicable, send the necessary data to reproduce the error.

Getting help: practice

- Open the file common_errors.Rmd, and try to solve the problems.
- You will need to submit your work to me via Slack.

Review of basics

The subsequent slides show some R basics that we have already covered during the live demonstrations but feel free to review them on your own.

Running R code and operators

Arithmetic Operators 1 + 1
[1] 2
2 * 8
[1] 16
9 / 3
[1] 3
2^3
[1] 8

Running R code and operators

Relational Operators
10 > 8 # is 10 bigger than 8?

[1] TRUE

7 <= 6 # is 7 less or equal to 6?

[1] FALSE

(2 * 5) == 10 # is 2*5 equal to 10?

[1] TRUE

1 != 2 # is 1 unequal to 2?

[1] TRUE

Objects in R: vectors and assignment

```
# Concatenate vectors into a new vector
c(1, 2, 3)
```

```
## [1] 1 2 3
```

```
# Assign them to a new object for manipulation
x <- c(1, 2, 3)
print(x) # or simply, x</pre>
```

[1] 1 2 3

Operators on vector
x + 1

[1] 2 3 4

Logical test on vector
x == 1

Objects in R: vectors and functions

Use an object as input to a function $x \le c(1, 2, 3)$

Functions take input(s) and produce output(s)
class(x)

[1] "numeric"

length(x)

[1] 3

mean(x)

[1] 2

Objects in R: introductory tips

 Unless you assign (<-) some operations or transformations to an object, those values will not be registered

```
x < -c(1, 2, 3)
print(x + 1)
## [1] 2 3 4
print(x)
## [1] 1 2 3
x < -x + 1
print(x)
```

[1] 2 3 4

Objects in R: introductory tips

New assignment will overwrite the original values if you assign some values to an existing object. It is a major source of errors. One advise is to keep distinct object names

```
x <- c(1, 2, 3)
length(x)
## [1] 3
x <- c(1, 2, 3, 4, 5)
length(x)
```

[1] 5

Objects in R: atomic vectors

 Most common types of atomic vectors: numeric (integer, double), logical, character

```
x <- c(1, 2, 3)
class(x)</pre>
```

```
## [1] "numeric"
```

```
y <- c(TRUE, FALSE, FALSE)
class(y)</pre>
```

```
## [1] "logical"
```

```
names <- c("Peter", "Paul", "Mary")
class(names)</pre>
```

```
## [1] "character"
```

Objects in R: atomic vectors

You can also coerce one type of vector into another:

```
x <- c(1, 2, 3)
x <- as.character(x)
print(x)
## [1] "1" "2" "3"
```

class(x)

[1] "character"

Objects in R: reading data

▶ You can import any data file and assign it into an object

```
x <- c(1, 2, 3)
x <- as.character(x)
print(x)
## [1] "1" "2" "3"
```

class(x)

```
## [1] "character"
```