CS&SS 321 - Data Science and Statistics for Social Sciences

Module IV - Hypothesis test and multivariate regression

Ramses Llobet

Module IV

- ► This module introduces and reviews the topic of causation in science.
 - ► Statistical Inference.
 - Hypothesis test.
 - ► Multivariate regression.

Statistical inference: estimation

- In statistical inference, we are concerned with making predictions (inferences) about a DGP or population based on information obtained from a sample.
- ► This involves the following key concepts:
 - ► Estimand: The quantity of interest from the data-generating process that we aim to estimate or infer.
 - **Estimator**: A statistical **method** or **formula** used to estimate the estimand based on sample data.
 - ► Estimate: it is the calculated value that serves as the best guess or approximation of the estimand based on the available information from the sample.

- ► Statistical inference involves using **estimators** to obtain **estimates** of **estimands** from sample data to make predictions about the population.
- Analogy: have you ever heard about the ecce homo?

► Estimates are best guesses, but they never return you the "true".

Population Parameter:

- ► A population **parameter** is a numerical value that describes a characteristic of a **population**.
- It is a fixed and unknown value that we aim to estimate or infer using statistical methods.

Sample Statistic:

- ► A sample **statistic** is a numerical value that describes a characteristic of a **sample**.
- ► It is calculated from the data of a sample and is used to estimate or make **inferences** about population parameters.

Sample statistics

► A **sample mean** that represents a social process:

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n) = \frac{1}{n}\sum_{i=1}^n X_i$$
 (1)

► The **sample variance** that we estimate:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$
 (2)

Sample statistics

	Grade_i	Grade_i - Grade_Mean	(Grade_i - Grade_Mean)^2
Student 1	2.4	-0.76	0.5776
Student 2	2	-1.16	1.3456
Student 3	3.8	0.64	0.4096
Student 4	3.6	0.44	0.1936
Student 5	3.4	0.24	0.0576
Student 6	2.9	-0.26	0.0676
Student 7	3.3	0.14	0.0196
Student 8	3.8	0.64	0.4096
Student 9	3.4	0.24	0.0576
Student 10	3	-0.16	0.0256
n	Mean		Variance
10	3.16	.16 0.3164	

- ► Typically, we seek to learn features from **populations**, but studying the entire population is unfeasible.
- ► Thus, we rely on **samples** to make **inferences** under different **assumptions**.

Parameter/Statistic	Population	Sample
Mean	μ	X
Variance	σ^2	$\hat{\sigma}^2$ or s^2
Standard deviation	σ	$\hat{\sigma}$ or s
Slope/coefficient	β	\hat{eta} or \emph{b}

 Table 1: Comparison of Population Parameters and Sample Statistics

► Example: We want to learn the mean GPA of the University of Washington (population) through random sampling students.

Estimation: Bias

- ► However, how can we tell if these are good estimates?
 - ▶ Ideally, we would compute the estimation error or **bias**.

$$bias = estimate - truth = \bar{X} - \mu \tag{3}$$

n	bias	$\bar{X} - \mu$
50	-0.40	3.02 - 3.42
75	0.29	3.71 - 3.42
100	-0.24	3.18 - 3.42
150	-0.17	3.25 - 3.42
200	0.11	3.53 - 3.42

Table 2: What is the extent of bias in our estimates?

Estimation: Consistency

► What may happen if we repeat this "experiment" and we increase the sample in each iteration?

Convergence of Sample Mean to Population Mean

Estimation: Bias and Consistency

▶ **Unbiasedness**: an estimator \bar{X} of a parameter μ is unbiased if and only if:

$$E(\bar{X}) = \mu \tag{4}$$

▶ Consistency: an estimator is consistent if for a sequence $\{X_n\}$ to converge to a limit μ as $n \to \infty$, we have:

$$\lim_{n \to \infty} X_n = \mu \tag{5}$$

However, an unbiased estimator with high variability is impractical because it will return **high prediction error** (MSE) as:

$$MSE = Var + bias^2 \tag{6}$$

Estimation

- ► Furthermore, they do not provide information about the **uncertainty** or precision of the estimate.
- ► Confidence intervals (Cls) address this issue by providing a range of plausible values for the estimate.
 - Cls are based on the principles of probability and sampling variability.
 - Different samples from the same population will yield different confidence intervals.

To construct **confidence intervals**, we need to estimate the standard deviation to determine the standard error.

Uncertainty: standard errors.

► The **sample standard deviation** is simply the square root of the variance (see second slide).

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2} \tag{7}$$

► To characterize the variability of an estimator, we compute the **standard error**:

$$SE(\bar{X}) = \frac{\hat{\sigma}}{\sqrt{n}} \tag{8}$$

Uncertainty: critical values.

To calculate the margin of error, we need to choose a **critical value**. Critical values influence the interpretation and outcome of the analysis because:

- constructing confidence intervals, and
- ▶ determining the **significance level** in hypothesis tests.

Significance Level	Critical Value	Confidence Interval
0.1	1.645	1 - 0.1 = 0.9 (90%)
0.05	1.96	1 - 0.05 = 0.95 (95%)
0.01	2.576	1 - 0.01 = 0.99 (99%)

Table 3: Common Critical Values and Confidence Intervals

Uncertainty: margin of error.

Once we have the standard error and select a critical value, the **margin error**, *ME*, and the **confidence intervals** are estimated as follows:

$$ME = \text{critical value} \times SE(\bar{X})$$
 (9)

Confidence Interval =
$$(\bar{X} - ME, \bar{X} + ME)$$

= (Cl_{lower}, Cl_{upper}) (10)

Uncertainty: example

```
dat <- read csv("data/students.csv")</pre>
names (dat)
## [1] "GPA"
                "gaming" "study" "quiz"
# Randomly sample 40 observations
sampled data <- sample(dat$GPA, size = 40, replace = F)
(GPA_mean <- mean(sampled_data) ) # sample mean
## [1] 3.132462
(GPA_sd <- sd(sampled_data)) # sample standard deviation
## [1] 1.348265
(GPA_se <- GPA_sd / sqrt( length(sampled_data) ) ) # sample standard errors
## [1] 0.2131794
```

Uncertainty: example

Question: Is the sample mean biased estimator? Is the population mean within the confidence interval of our estimator?

```
statistics <- tibble(
 mean = GPA mean,
 CI lwr = GPA mean - (1.96 * GPA se),
 CI_upr = GPA_mean + (1.96 * GPA_se)
mean(dat$GPA) # population mean of GPA
## [1] 3.203627
statistics
## # A tibble: 1 x 3
## mean CI_lwr CI_upr
## <dbl> <dbl> <dbl>
## 1 3.13 2.71 3.55
```

- We rely on samples for making inferences. To determine if our estimations approach the true population parameter, we use confidence intervals.
- ► A **confidence interval** is a range of plausible estimates.
- ▶ The **confidence level**, denoted as (1α) or simply 1 significance level, is **interpreted** as the probability that the confidence interval **will contain** the true population parameter **over hypothetical replications**.

► Example: a **95%** confidence interval implies that if we were to **hypothetically repeat** the estimation and construct confidence intervals for each sample/estimate, approximately 95% of those intervals **would** contain the *true* parameter.

Imai (2018, p. 328) - critical values

Figure 7.1. Critical Values Based on the Standard Normal Distribution. The lower and upper critical values, $-z_{\alpha/2}$ and $z_{\alpha/2}$, are shown on the horizontal axis. The area under the density curve between these critical values (highlighted in blue) equals $1-\alpha$. These critical values are symmetric.

▶ Resampling and estimating the GPA of the same population (UW) over 100 iterations with a significance level of 0.1 (90% confidence intervals).

Confidence Intervals Simulation (90%)

▶ Resampling and estimating the GPA of the same population (UW) over 100 iterations with a significance level of 0.05 (95% confidence intervals).

Confidence Intervals Simulation (95%)

Resampling and estimating the GPA of the same population (UW) over 100 iterations with a significance level of 0.01 (99% confidence intervals).

Confidence Intervals Simulation (99%)

Takeaways

- ► Understand bias and consistency.
- Estimates must always inform of uncertainty.
- ► The impact of the **critical value** (α) on constructing confidence intervals.
- Wider confidence intervals increase the likelihood of the "true value" being within the intervals over hypothetical replications.
 - Question: Why might someone want to calculate narrower confidence intervals?

Time to code a little bit!

► Open the file Confint.rmd

Hypothesis Testing: motivation

- ► We have drawn a distinction between a population and a sample. However, how do we know that the sample reflects the population of interest?
- ▶ Due to inherent variability in the data, the sample may not perfectly reflect the entire population.
- ► Through a **t-test**, we assess whether the observed difference between the sample mean and the **hypothesized value** exceeds what is expected due to chance (aka random sampling variability alone).

Hypothesis Testing: motivation

► What if the sample mean is really off from the population mean?

Hypothesis Testing

- Hypothesis testing is used to make inferences about population parameters based on sample data.
- ► It involves formulating **null** and **alternative hypotheses** and evaluating the evidence against the null hypothesis.
 - ▶ Null Hypothesis (H_0): a statement of no effect or no difference between groups or variables (*proof by contradiction*).
 - ▶ Alternative Hypothesis (H_a): contradicts the null hypothesis and suggests the presence of an effect or a difference between groups or variables.
- ► **Goal**: Does the *evidence* from the sample supports the **null** hypothesis or provides evidence for the **alternative** hypothesis?

Hypothesis Testing

- ► **T-test**: quantifies the difference between the **sample** statistic and the hypothesized **population** parameter relative to the variability within the data.
 - ► It takes into account the **sample size** (*N*) and the **standard error** (*SE*) of the statistic to assess the likelihood of observing such a difference by chance.
- Significance Level (α): The predetermined threshold for rejecting the null hypothesis.

Hypothesis Testing: p-values

- ▶ **P-value**: it measures the **strength of evidence** against the null hypothesis, we compare it with the significance level to determine if we **reject or fail to reject** the null (H_0) .
 - p-value is large: suggest insufficient evidence to reject the null hypothesis.
 - ▶ p-value is **low**: stronger evidence against the null, favoring the alternative(H_a).

Hypothesis Testing: error types

► There is a clear trade-off between Type I and Type II errors in that minimizing type I error usually increases the risk of type II error.

Decision	H₀ is True	H₀ is False
Retain H_0	Correct	Type II Error
Reject H ₀	Type I Error	Correct

Hypothesis Testing: error types

Type I error (false positive)

Type II error (false negative)

- 1. State the **null** and **alternative** hypotheses.
- **2.** Choose a test statistic and the **significance level** (α) .
- **3.** Estimate the test statistic, in our case the **t-value**.
- **4.** Compute the **p-value**, and compare it with with the significance level.
 - ▶ For example, is *p*-value $< \alpha$?
- **5.** Reject the null hypothesis if the *p*-value is less than or equal to α .

- We will focus on a scenario where we want to assess the association of air and water pollution on climate change.
 - Disclaimer: this data was simulated.

► We define a theoretical model:

$$cc = \alpha + \beta_1 air + \beta_2 water + \epsilon$$
 (11)

- 1. State the null and alternative hypotheses:
 - Null Hypothesis (H_0) : air (β_1) or water (β_2) pollution are **not** associated with climate change. In other words, $\beta_1 = 0$ or $\beta_2 = 0$.
 - ▶ Alternative Hypothesis (H_a): air or water are associated with climate change. In other words, $\beta_1 \neq 0$ or $\beta_2 \neq 0$
- **2.** Set the **significance level**, the default in social sciences is 0.05.

► The lm() function estimates the t-statistic and p-values (steps 3 and 4) using the fitted model and sample data argument.

```
model <- lm(climate_change ~ air_pollution + water_pollution)
round(coef(model), digits=2)

## (Intercept) air_pollution water_pollution
## 0.65 1.87 0.18</pre>
```

► Estimated model, are the coefficients statistically significant?

$$cc = 0.65 + 1.87air + 0.18water$$
 (12)

Model summary

- ▶ Use the function summary() for the t-test and the p-value.
- ightharpoonup Can we reject H_0 ?
 - Remember that the **significant level** that we choose was 0.05 (critical value = 1.96).

```
summary(model)
##
## Call:
## lm(formula = climate change ~ air pollution + water pollution)
## Residuals:
      Min
              10 Median 30 Max
## -1.8735 -0.6615 -0.1320 0.6208 2.0701
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 0.6491 0.4555 1.425 0.1574
## air pollution 1.8663 0.1048 17.802 <2e-16 ***
## water pollution 0.1840 0.1093 1.683 0.0956 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9514 on 97 degrees of freedom
## Multiple R-squared: 0.7662, Adjusted R-squared: 0.7614
## F-statistic: 158.9 on 2 and 97 DF, p-value: < 2.2e-16
```

ightharpoonup Can we reject H_0 ?

```
(p_value <- summary(model)$coefficients[, "Pr(>|t|)"])
##
       (Intercept)
                     air pollution water pollution
##
      1.573807e-01
                     2.525692e-32
                                      9.558931e-02
(t value <- summary(model)$coefficients[, "t value"])</pre>
##
       (Intercept) air_pollution water_pollution
##
          1,424952
                         17 802076
                                          1 683010
p_value < 0.05 # is p-value < significant level?
##
       (Intercept)
                     air pollution water pollution
             FALSE
                              TRUE.
                                              FALSE
##
t_value > 1.96 # is t-value > critical value?
##
       (Intercept)
                     air_pollution water_pollution
             FALSE
                              TRUE.
                                              FALSE
##
```

- ightharpoonup Can we reject H_0 ?
 - ► *H*₀ air pollution: sufficient evidence to reject the null hypothesis.
 - H₀ water pollution: insufficient evidence to reject the null hypothesis.
- ► Conclusion: air pollution has a positive significant association with climate change. However, water pollution is not statistically significant.
 - ▶ When an estimated coefficient is not statistically significant, we mean that it is not **significantly different from 0**. In this case, $\beta_2 = 0 \neq 0.18$, because we fail to reject the null H_0 for water pollution.
- ► However...

► Can we really reject H_0 if we instead use a significant level of **0.10**?

```
p_value < 0.1 # is p-value < significant level?
       (Intercept)
##
                     air_pollution water_pollution
##
             FALSE
                               TRUE
                                                TRUE
t value > 1.645 # is t-value > critical value?
##
       (Intercept)
                     air_pollution water_pollution
             FALSE
                               TRUE
                                                TRUE
##
```

► Type I and II error trade-off.

- Confidence intervals and hypothesis testing are closely related.
- ▶ If the confidence interval **contains the null** value, $\beta_2 = 0$, the null hypothesis cannot be rejected.
- ► The p-value in hypothesis testing **quantifies** the strength of evidence against the null hypothesis, similar to how confidence intervals provide a range of **plausible** parameter values.
 - Important: the p-value is NOT the probability that the null is true.

Preview of Problem Set 4

- ► Problem of missingness
- ► Merging datasets
- ► Log transformations

Problem of missingness

- ► Default option: Listwise deletion
 - ► The whole observation (row) is deleted if **any** variable is missing
 - ► Even just 1 variable!
 - ► Can introduce bias

Investigate missingness

► Many functions/packages allow to check missigness

```
gapminder <- read_csv("data/gapminder2.csv")

# check missigness
questionr::freq.na(gapminder)</pre>
```

```
## missing %
## lifeExp 341 20
## gdpPercap 170 10
## cntry 0 0
## continent 0 0
## year 0 0
## pop 0 0
```

Investigate missingness

```
## For a single variable
mean(is.na(gapminder$gdpPercap))
## [1] 0.09976526
## For multiple variables
gapminder %>% summarize_all(~ mean(is.na(.)))
## # A tibble: 1 x 6
##
    cntry continent year lifeExp pop gdpPercap
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 0 0.200 0 0.0998
## A dummy if any variable is NA
gapminder$missing_dummy <- ifelse(apply(gapminder, 1, anyNA), 1, 0)</pre>
mean(gapminder$missing dummy)
## [1] 0.2764085
```

Investigate missingness

```
# with dplyr
gapminder %>%
 group_by(year) %>%
  summarize(missing=mean(missing_dummy,na.rm=T)) %>% print(n=8)
## # A tibble: 12 x 2
##
     year missing
##
    <dbl> <dbl>
## 1 1952 0.303
## 2 1957 0.324
## 3 1962 0.261
## 4 1967 0.254
## 5 1972 0.239
## 6 1977 0.261
## 7
    1982 0.275
## 8 1987 0.282
## # i 4 more rows
# with base R
tapply(gapminder$missing_dummy,gapminder$year,mean,na.rm=T)
```

1967

1972

1977

1982

1957

1962

1952

##

Handling missingness

```
# Listwise deletion
gapminder_noNA <- na.omit(gapminder)</pre>
nrow(gapminder) - nrow(gapminder noNA)
## [1] 471
# Be more careful and selective when you drop NA
gapminder_noNA <- drop_na(gapminder, gdpPercap)</pre>
nrow(gapminder) - nrow(gapminder noNA)
## [1] 170
```

Log transformations

There are several reasons why someone might choose to **transform** a variable using a **logarithm function** before fitting a model:

- 1. Non-linear relationships: taking the logarithm of a variable can help to linearize the relationship
- Interpretability: when dealing with exponential growth or decay, taking the logarithm can convert it to a linear relationship.
- **3. Multiplicative relationships**: by transforming the variables using logarithms, these relationships can be simplified to additive relationships

The interpretation of a log transformation varies **depending on the transformed variables**: dependent, independent, or both.

Log transformations: dependent/response variable

$$log(Y_i) = \alpha + \beta * X_i + \epsilon_i$$

- **Exponentiate** the coefficient (β) of X.
 - ► This gives the multiplicative factor for every one-unit increase in the independent variable.

Log transformations: dependent/response variable

$$log(Y_i) = \alpha + 0.198 * X_i + \epsilon_i$$

- ► Example: the coefficient (β) is 0.198. exp(0.198) = 1.218962.
- ► Interpretation: for every one-unit increase in the independent variable, our dependent variable increases by a factor of about 1.22, or 22%.
 - ▶ When $(\beta > 1)$: multiplying a number by 1.22 is the same as **increasing** the number by 22%.
 - ▶ When (β < 1): multiplying a number by, say 0.84, is the same as **decreasing** the number by 1 0.84 = 0.16, or 16%.

Log transformations: independent/predictor variable

$$Y_i = \alpha + \beta * log(X_i) + \epsilon_i$$

- **▶** Divide the coefficient by 100.
 - ► This tells us that a 1% increase in the independent variable increases (or decreases) the dependent variable by (coefficient/100) units.

Log transformations: independent/predictor variable

$$Y_i = \alpha + 0.198 * log(X_i) + \epsilon_i$$

- **Example**: the coefficient (β) is 0.198. 0.198/100 = 0.00198.
 - ► **Interpretation**: For every 1% increase in the independent variable, our dependent variable increases by about 0.002.
- ► Interpreting X: For x percent increase, multiply the coefficient by log(1.x).
 - **Example**: For every 10% increase in the independent variable, our dependent variable increases by about 0.198 * log(1.10) = 0.02.

Log transformations: dependent/response variable

$$log(Y_i) = \alpha + \beta * log(X_i) + \epsilon_i$$

▶ Interpret the coefficient (β) as the **percent increase** in the dependent variable for every **1% increase** in the independent variable.

Log transformations: dependent/response variable

$$log(Y_i) = \alpha + 0.198 * log(X_i) + \epsilon_i$$

- ▶ Example: the coefficient (β) is 0.198. For every 1% increase in the independent variable (X), our dependent variable (Y) increases by about 0.20%.
- ► Interpreting X: for x percent increase in X, calculate 1.x to the power of the coefficient, subtract 1, and multiply by 100.
 - ► **Example**: For every 20% increase in the independent variable, our dependent variable increases by about:
 - \blacktriangleright $(1.20^{0.198} 1) * 100 = 3.7$ percent.

data %>% head(12)

Let's look at some data that has units (N) and for each unit several time periods (T).

```
id time
##
## 1
        1 0.65674831 0.04367577
## 2
    1 2 0.33917190 0.56187415
## 3 1
          3 -0.64075850 0.35627259
## 4
    1 4 -1.44009620 -1.00115829
## 5
          5 0.22082243 1.40279577
## 6
          6 -0.40975236 0.41626347
## 7
       7 -0.37248074 -1.14088682
## 8
    1 8 -2.12337475 0.46023882
        1 0.05988054 0.99210062
## 9
## 10
          2 -1.93975204 0.50146125
      2 3 -1.13816678 -0.23413534
## 11
## 12
      2 4 -0.75639556 0.02076991
```

CS&SS 321 - Data Science and Statistics for Social Sciences

```
data %>% group_by(id) %>% summarize(x=mean(x))
## # A tibble: 4 x 2
##
  id
##
    <fct> <dbl>
## 1 1
      0.137
## 2 2 -0.00282
## 3 3 -0.358
## 4 4 -0.541
data %>% group_by(time) %>% summarize(x=mean(x))
## # A tibble: 8 x 2
## time
## <fct> <dbl>
## 1 1
      -0.277
## 2 2 -0.101
## 3 3 0.0753
## 4 4 -0.305
## 5 5 -0.240
## 6 6
      0.310
## 7 7
      0.245
```

Now, let's fit a slope between Y and X.

What happens if instead we fit a slope for each **unit** (N)?

Motivation: does a general relationship holds at the unit level?

- ► Fixed effects estimation is employed to investigate whether a general relationship holds at the unit level.
- ▶ By fitting a slope **within** each unit instead of pooling all the data, we can identify distinct patterns, which may sometimes be conflicting.
 - ► This phenomenon is referred to as the Simpson paradox.

Fixed effects

► Simpson's paradox

Fixed effects

- Account for unobserved time-invariant confounders
- Let's say, the relationship between democracy and economic development
 - Some country-specific but time-invariant characteristics can be confounders
 - ► For example, culture or legal institutions rarely change during short periods of time (*T*).
- ► Pooled regression model:

$$Y_{it} = \alpha + \beta X_{it} + \epsilon_{it}$$

Fixed effects regression model:

$$Y_{it} = \alpha_i + \beta X_{it} + \epsilon_{it}$$

for each i = 1, 2, ..., N, where α_i is a fixed but unknown intercept

Fixed effects in R

```
worldbank <- read.csv("data/world bank.csv")</pre>
lm1_res <- lm(inf_mort ~ gdp_per_capita + factor(country_code), worldbank)</pre>
summary(lm1 res)
##
## Call:
## lm(formula = inf mort ~ gdp per capita + factor(country code),
      data = worldbank)
##
##
## Residuals:
       Min
                 10 Median
##
                                   30
                                           Max
## -163.140 -11.482 -1.314 9.447 161.140
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          9.705e+01 8.790e+00 11.040 < 2e-16 ***
## gdp_per_capita
                         -6.795e-04 7.977e-05 -8.518 < 2e-16 ***
## factor(country_code)AGO 8.633e+01 1.059e+01 8.151 4.25e-16 ***
## factor(country_code)ALB -6.163e+01 1.036e+01 -5.948 2.84e-09 ***
## factor(country code)AND -6.460e+01 1.103e+01 -5.855 4.99e-09 ***
## factor(country_code)ARE -3.309e+01 1.145e+01 -2.889 0.003875 **
## factor(country_code)ARG -5.984e+01
                                      1.006e+01 -5.950 2.81e-09 ***
```

Fixed effects in R

Table 4:

	Dependent variable:
	inf_mort
gdp_per_capita	-0.001***
	(0.0001)
Constant	97.049***
	(8.790)
Year fixed effects	Yes
Observations	7,176
R^2	0.779
Adimeted D2	O 772

Lab Coding Demonstration:

► Open today's lab markdown file to view the coding demonstration.

Tools for learning: trade-offs

▶ Question: what do these pictures have in common?

Tools for learning: models

These pictures depict various models; they are tools for learning.

"All models are wrong but some are useful"

George Box, 1976

- ► Models are
 - ▶ **simplified representations** of real-world systems.
 - ▶ facilitate **clear and concise** communication of complex ideas.
 - help to understand complex systems by highlighting significant variables.

Good luck on your journey!

- ► Please, be aware that you have only scratched the surface of a vast array of methodologies for scientific inference, including
 - ► Time series and panel data.
 - ► Multilevel models.
 - Bayesian inference.
 - machine learning for prediction and discovery.
 - ▶ Deep learning.
 - ► Applied causal inference, among others . . .

Good luck on your journey!

- ► Remember the importance of consistency, bias, and efficiency in statistical inference.
 - Consistency is the most important property, before bias and efficiency!

Good luck on your journey!

- ► I hope you gained valuable insights from my labs.
- ▶ Best of luck with your future endeavors, and please. . .
 - ► take a moment to fill out the **course evaluations** if you haven't done so already!

Best wishes,

Ramses